Interpolating real polynomials

Joaquim Ortega-Cerdà

Universitat de Barcelona, BGSMath

Providence, June 6, 2018
Interpolating sequences

Let X be a set and H a reproducing kernel Hilbert space of real functions defined on X, i.e. for all $x \in X$, there is a $K_x \in H$ such that

$$f(x) = \langle f, K_x \rangle.$$

We normalize the reproducing kernel and denote

$$\kappa_x = K_x / \| K_x \|.$$
Interpolating sequences

Let X be a set and H a reproducing kernel Hilbert space of real functions defined on X, i.e. for all $x \in X$, there is a $K_x \in H$ such that

$$f(x) = \langle f, K_x \rangle.$$

We normalize the reproducing kernel and denote

$$\kappa_x = K_x / \|K_x\|.$$

Definition

A sequence $\Lambda \subset X$ is an interpolating sequence for H whenever

$$\sum_{\lambda \in \Lambda} |c_\lambda|^2 \simeq \| \sum_{\lambda \in \Lambda} c_\lambda \kappa_\lambda \|^2.$$
Let $\Lambda \subset \mathbb{R}$, then

Definition

A sequence of functions $\{f_\lambda(z) = \frac{\sin \pi(z-\lambda)}{\pi(z-\lambda)}\}_{\lambda \in \Lambda}$ is a Riesz sequence for the Paley Wiener space whenever,

$$\sum_{\lambda \in \Lambda} |c_\lambda|^2 \lesssim \left| \sum_{\lambda \in \Lambda} c_\lambda f_\lambda \right|^2 \lesssim \sum_{\lambda \in \Lambda} |c_\lambda|^2.$$

This implies that Λ is uniformly separated.
The density of a interpolating sequences

There is a density that almost describes interpolating sequences

Definition

The upper Beurling-Landau density of a sequence $\Lambda \subset \mathbb{R}$ is

$$D^+(\Lambda) = \lim_{r \to \infty} \sup_{x \in \mathbb{R}} \frac{\#\{\Lambda \cap (x - r, x + r)\}}{2r}.$$
The density of interpolating sequences

There is a density that almost describes interpolating sequences.

Definition

The upper Beurling-Landau density of a sequence \(\Lambda \subset \mathbb{R} \) is

\[
D^+(\Lambda) = \lim_{r \to \infty} \sup_{x \in \mathbb{R}} \frac{\#\{\Lambda \cap (x - r, x + r)\}}{2r}.
\]

Theorem (Beurling)

A separated sequence \(\Lambda \subset \mathbb{R} \) is interpolating for PW if \(D^+(\Lambda) < 1 \). Moreover if \(\Lambda \) is interpolating then \(D^+(\Lambda) \leq 1 \).
Our setting

Let Ω be a smooth bounded strictly convex domain in \mathbb{R}^d.

Let P_n be the real polynomials of degree n. Let dV be the normalized Lebesgue measure restricted to Ω. We denote by $N_n = \dim(P_n)$. We endow P_n with the norm given by $L_2^2(V)$.

$\|p\|_2 = \int_{\Omega} |f(x)|^2 dV(x)$.
Let Ω be a smooth bounded strictly convex domain in \mathbb{R}^d. Let \mathcal{P}_n be the real polynomials of degree n.
Our setting

Let Ω be a smooth bounded strictly convex domain in \mathbb{R}^d. Let \mathcal{P}_n be the real polynomials of degree n. Let dV be the normalized Lebesgue measure restricted to Ω. We denote by $N_n = \dim(\mathcal{P}_n)$.
Let Ω be a smooth bounded strictly convex domain in \mathbb{R}^d. Let \mathcal{P}_n be the real polynomials of degree n. Let dV be the normalized Lebesgue measure restricted to Ω. We denote by $N_n = \text{dim}(\mathcal{P}_n)$. We endow \mathcal{P}_n with the norm given by $L^2(V)$.

$$\|p\|^2 = \int_{\Omega} |f(x)|^2 \, dV(x).$$
Interpolating sequences

Let \(\Lambda = \{ \Lambda_n \}_n \subset \Omega \) be a sequence of finite sets of points of \(\Omega \subset \mathbb{R}^d \).

Definition

We say that \(\Lambda \) is an interpolating sequence if there is a constant \(C > 0 \) such that

\[
C^{-1} \sum_{\lambda \in \Lambda_n} |c_\lambda|^2 \leq \left| \sum_{\lambda \in \Lambda} c_\lambda \kappa^n_\lambda \right|^2 \leq C \sum_{\lambda \in \Lambda_n} |c_\lambda|^2,
\]

where \(\kappa^n_\lambda \) is the normalized reproducing kernel.

We are interested in the geometric distribution of points in \(\Lambda \).
Λ is an interpolating is equivalent to the two following properties.

\[
\sum_{\lambda \in \Lambda_n} \frac{|p(\lambda)|^2}{K_n(\lambda, \lambda)} \leq C \|p\|^2, \quad \forall p \in \mathcal{P}_n
\]

and for any sequence of sets of values \(\{v_\lambda\}_{\lambda \in \Lambda_v} \) there are polynomials \(p_n \in \mathcal{P}_n \) such that \(p_n(\lambda) = v_\lambda \) with

\[
\|p_n\|^2 \leq C \sum_{\lambda \in \Lambda_n} \frac{|v_\lambda|^2}{K_n(\lambda, \lambda)}.
\]
The “natural” normalization

The natural normalization is

\[c_{\lambda,n} = \sup_{p \in P_n, \|p\|=1} |p(\lambda)|^2. \]
The “natural” normalization

The natural normalization is

\[c_{\lambda,n} = \sup_{p \in \mathcal{P}_n, \|p\|=1} |p(\lambda)|^2. \]

This can be computed as follows. Take \(p_1, \ldots, p_{N_n} \) an orthonormal basis of \(\mathcal{P}_n \) and construct:

\[K_n(z, w) = \sum_j p_j(z)p_j(w), \]

Moreover \(K_n \) is the reproducing kernel:

\[p(z) = \int_\Omega K_n(z, w)p(w)\,dV(w), \quad \forall p \in \mathcal{P}_n \]
The “natural” normalization

The natural normalization is

\[c_{\lambda,n} = \sup_{p \in \mathcal{P}_n, \|p\|=1} |p(\lambda)|^2. \]

This can be computed as follows. Take \(p_1, \ldots, p_{N_n} \) an orthonormal basis of \(\mathcal{P}_n \) and construct:

\[K_n(z, w) = \sum_j p_j(z)p_j(w), \]

\[c_{\lambda,n} = K_n(\lambda, \lambda) \simeq \min \left(\frac{n^d}{\sqrt{d(\lambda)}}, n^{d+1} \right). \]
The “natural” normalization

The natural normalization is

$$c_{\lambda,n} = \sup_{p \in \mathcal{P}_n, \|p\|=1} |p(\lambda)|^2.$$

This can be computed as follows. Take p_1, \ldots, p_{N_n} an orthonormal basis of \mathcal{P}_n and construct:

$$K_n(z, w) = \sum_j p_j(z)p_j(w),$$

$$c_{\lambda,n} = K_n(\lambda, \lambda) \simeq \min \left(\frac{n^d}{\sqrt{d(\lambda)}}, n^{d+1} \right).$$

Moreover K_n is the reproducing kernel:

$$p(z) = \int_{\Omega} K_n(z, w)p(w) \, dV(w), \quad \forall p \in \mathcal{P}_n$$
The Plancherel-Polya sequences are a particular case of Carleson measures.

Definition

A sequence of measures in Ω, μ_k is Carleson if there is a constant $C > 0$ such that

$$\int_{\Omega} |p|^2 \, d\mu_k \leq C\|p\|^2, \quad \forall p \in \mathcal{P}_k.$$

We have a geometric characterization of Carleson measures.
An anisotropic metric

In the ball there is an anisotopic distance given by

\[d(x, y) = \arccos \left\{ \langle x, y \rangle + \sqrt{1 - |x|^2} + \sqrt{1 - |y|^2} \right\}. \]

This is the geodesic distance of the points in the sphere \(S^d \) defined as \(x' = (x, \sqrt{1 - |x|^2}) \) and \(y' = (x, \sqrt{1 - |x|^2}). \)
An anisotropic metric

In the ball there is an anisotropic distance given by

\[d(x, y) = \arccos \left\{ \langle x, y \rangle + \sqrt{1 - |x|^2} + \sqrt{1 - |y|^2} \right\}. \]

This is the geodesic distance of the points in the sphere \(S^d \) defined as \(x' = (x, \sqrt{1 - |x|^2}) \) and \(y' = (x, \sqrt{1 - |x|^2}) \).

If we consider balls \(B(x, r) \) in this distance they are comparable to a box (a product of intervals) which is of size \(R \) in the tangent directions and \(R^2 + R\sqrt{1 - |x|^2} \) in the normal direction.
The geometric characterization of the Carleson measures is the following:

Theorem

Let Ω be a ball. A sequence of measures μ_n is Carleson if there is a constant C such that for all points $z \in \Omega$

$$\mu_n(B(z, 1/n)) \leq CV(B(z, 1/n)).$$
Bochner-Riesz type kernels

Proof.

The main ingredient in the proof is the existence of well localized kernels (the needlets of Petrushev and Xu), i.e. kernels $L_n(x, y)$ such that for an arbitrary k there is a constant C_k such that:

$$|L_n(x, y)| \leq C_k \frac{\sqrt{K_n(x, x)K_n(y, y)}}{(1 + nd(x, y))^k},$$

and moreover $L_n(x, x) \simeq K_n(x, x)$ and $L_n \in P_{2n}$ and reproduce the polynomials of degree n.

We try to identify which is the critical density. We will use the following result:

Theorem (Berman, Boucksom, Witt-Nyström)

If μ is a Bernstein-Markov measure then

$$\frac{K_n(x, x)d\mu(x)}{N_n} \star \mu^{eq}.$$

The Bernstein-Markov condition is technical and it is satisfied when $\mu = \chi_{\Omega}dV$. The measure μ^{eq} is the equilibrium measure.
The equilibrium potential

Definition

Given a compact $K = \overline{\Omega} \subset \mathbb{R}^d$ and any $z \in \mathbb{C}^d$ one defines the Siciak-Zaharjuta equilibrium potential as

$$u_K(z) = \sup \left\{ \frac{\log |p(z)|}{\deg(p)} : \sup_K |p| \leq 1 \right\}.$$
The equilibrium potential

Definition

Given a compact $K = \overline{\Omega} \subset \mathbb{R}^d$ and any $z \in \mathbb{C}^d$ one defines the Siciak-Zaharjuta equilibrium potential as

$$u_K(z) = \sup \left\{ \frac{\log |p(z)|}{\deg(p)} : \sup_K |p| \leq 1 \right\}.$$

Then the equilibrium measure is defined as the Monge-Ampere of u_K

$$\mu^{eq} = (i\partial\bar{\partial}u_K)^d.$$

The equilibrium measure is a positive measure supported on K.
What does μ^{eq} look like?

The measure μ^{eq} is a well-known object in pluripotential theory. In the examples we mentioned before it is well understood.

Theorem (Bedford-Taylor)

If Ω is an open bounded convex set in \mathbb{R}^d then

$$d\mu^{eq}(x) \sim d_{euc}(x, \partial \Omega)^{-1/2} dV(x).$$
Main result

Theorem

If Λ is an interpolating sequence for the polynomials in a bounded smooth strictly convex domain then

$$\limsup_{n \to \infty} \frac{1}{N_n} \sum_{\lambda \in \Lambda_n} \delta_\lambda \leq \mu_{eq}.$$

In particular, given any ball B in Ω we have

$$\limsup_{n \to \infty} \frac{\#(\Lambda_n \cap B)}{N_n} \leq \mu_{eq}(B),$$

thus μ_{eq} is the Nyquist density.
Main result

Theorem

If Λ is an interpolating sequence for the polynomials in a bounded smooth strictly convex domain then

$$\limsup_{n \to \infty} \frac{1}{N_n} \sum_{\lambda \in \Lambda_n} \delta_\lambda \leq \mu^{eq}.$$

In particular, given any ball B in Ω we have

$$\limsup_{n \to \infty} \frac{\#(\Lambda_n \cap B)}{N_n} \leq \mu^{eq}(B),$$

thus μ^{eq} is the Nyquist density.
The Kantorovich-Wasserstein distance

Given a compact metric space K we defines the K-W distance between two measures μ and ν supported in K as

$$KW(\mu, \nu) = \inf_{\rho} \iint_{K \times K} d(x, y) \, d\rho(x, y),$$

where ρ is an admissible measure, i.e. the marginals of ρ are μ and ν respectively.
The Kantorovich-Wasserstein distance

Given a compact metric space K we define the K-W distance between two measures μ and ν supported in K as

$$KW(\mu, \nu) = \inf_{\rho} \int\int_{K \times K} d(x, y) d\rho(x, y),$$

where ρ is an admissible measure, i.e. the marginals of ρ are μ and ν respectively. Alternatively:

$$KW(\mu, \nu) = \inf_{\rho} \int\int_{K \times K} d(x, y) d|\rho|(x, y),$$

where ρ is an admissible complex measure, i.e. the marginals of ρ are μ and ν respectively.
The complex transport plan

The K-W distance metrizes the weak-* convergence. We want to prove that

$$KW(b_n, \sigma_n) \to 0,$$

where $b_n \leq K_n(x, x) dV(x)/N_n$ is smaller than the Bergman measure and

$$\sigma_n = \frac{1}{N_n} \sum_{\lambda \in \Lambda_n} \delta_\lambda$$
The complex transport plan

The K-W distance metrizes the weak-∗ convergence. We want to prove that

\[KW(b_n, \sigma_n) \to 0, \]

where \(b_n \leq K_n(x, x)dV(x)/N_n \) is smaller than the Bergman measure and

\[\sigma_n = \frac{1}{N_n} \sum_{\lambda \in \Lambda_n} \delta_\lambda \]

The transport plan \(\rho_n \) that is convenient to estimate is:

\[\rho_n(x, y) = \frac{1}{N_n} \sum_{\lambda \in \Lambda_n} \delta_\lambda(y) \times g_\lambda(x) \frac{K_n(\lambda, x)}{\sqrt{K_n(\lambda, \lambda)}} \, dV(x), \]

where \(g_\lambda \) is the biorthogonal basis to \(\left\{ \frac{K_n(\lambda, x)}{\sqrt{K_n(\lambda, \lambda)}} \right\}_{\lambda \in \Lambda_n} \) in the space \(\mathcal{F}_n \subset \mathcal{P}_n \) spanned by \(\{ \kappa_\lambda, \lambda \in \Lambda_n \} \).
The complex transport plan

The two marginals of ρ_n are

$$\nu_n := \frac{1}{N_n} K_n(x, x) \, dV(x) \leq \frac{1}{N_n} K_n(x, x) \, dV(x) \overset{*}{\to} \mu^{eq}$$
The complex transport plan

The two marginals of ρ_n are

- $\nu_n := \frac{1}{N_n} K_n(x, x) \, dV(x) \leq \frac{1}{N_n} K_n(x, x) \, dV(x) \rightharpoonup \mu^\text{eq}$
- $\sigma_n := \frac{1}{N_n} \sum_{\lambda \in \Lambda_n} \delta_\lambda$
The complex transport plan

The two marginals of ρ_n are

- $\nu_n := \frac{1}{N_n} K_n(x, x) \, dV(x) \leq \frac{1}{N_n} K_n(x, x) \, dV(x) \overset{\ast}{\rightharpoonup} \mu^\text{eq}$
- $\sigma_n := \frac{1}{N_n} \sum_{\lambda \in \Lambda_n} \delta_\lambda$

and

$$KW(\nu_n, \sigma_n) \leq \frac{1}{N_n} \sum_{\lambda \in \Lambda_n} \int_\Omega d(\lambda, x) |g_\lambda(x)| \frac{|K_n(\lambda, x)|}{\sqrt{K_n(\lambda, \lambda)}} \, dV(x).$$
The complex transport plan

The two marginals of ρ_n are

- $\nu_n := \frac{1}{N_n} \mathcal{K}_n(x, x) \, dV(x) \leq \frac{1}{N_n} K_n(x, x) \, dV(x) \xrightarrow{\ast} \mu^{eq}$
- $\sigma_n := \frac{1}{N_n} \sum_{\lambda \in \Lambda_n} \delta_{\lambda}$

and

$$KW(\nu_n, \sigma_n) \leq \frac{1}{N_n} \sum_{\lambda \in \Lambda_n} \int_{\Omega} d(\lambda, x) |g_{\lambda}(x)| \frac{|K_n(\lambda, x)|}{\sqrt{K_n(\lambda, \lambda)}} \, dV(x).$$

Thus

$$KW^2(\nu_n, \sigma_n) \lesssim \frac{1}{N_n} \iint d^2(x, y) |K_n(x, y)|^2 \, dV(x) \, dV(y).$$
An off-diagonal estimate

Given a bounded function f on M we denote by T_f be the Toeplitz operator on $\mathcal{P}_n \cap L^2(\Omega)$ with symbol f, i.e. $T_f := \Pi_n \circ f$. where Π_n denotes the orthogonal projection from $L^2(\Omega)$ to \mathcal{P}_n.

It can be easily computed:

$$\text{Tr} T_f^2 - \text{Tr} T_f^2 = \frac{1}{2} \int_{\Omega} \int_{\Omega} \left(f(x) - f(y) \right)^2 |K_n(x,y)|^2 dV(x) dV(y).$$

Now, setting $f := x^i$ we observe than on $\mathcal{P}_n - 1$, $T_f(p) = x^i p$.

Therefore:

$$\text{Tr} T_f^2 - \text{Tr} T_f^2 = 0 \text{ on } \mathcal{P}_n - 2.$$

Therefore:

$$\text{Tr} T_f^2 - \text{Tr} T_f^2 = O(k_n - 1)$$

and

$$K_W^2(\nu_n, \sigma_n) \lesssim 1/n.$$
An off-diagonal estimate

Given a bounded function f on M we denote by T_f be the Toeplitz operator on $\mathcal{P}_n \cap L^2(\Omega)$ with symbol f, i.e. $T_f := \Pi_n \circ f$, where Π_n denotes the orthogonal projection from $L^2(\Omega)$ to \mathcal{P}_n. It can be easily computed:

$$\text{Tr } T_f^2 - \text{Tr } T_f = \frac{1}{2} \int_{\Omega \times \Omega} (f(x) - f(y))^2 |K_n(x, y)|^2 dV(x)dV(y).$$
An off-diagonal estimate

Given a bounded function f on M we denote by T_f be the Toeplitz operator on $\mathcal{P}_n \cap L^2(\Omega)$ with symbol f, i.e. $T_f := \Pi_n \circ f$. where Π_n denotes the orthogonal projection from $L^2(\Omega)$ to \mathcal{P}_n. It can be easily computed:

$$\text{Tr } T_f^2 - \text{Tr } T_{f^2} = \frac{1}{2} \int_{\Omega \times \Omega} (f(x) - f(y))^2 |K_n(x, y)|^2 dV(x)dV(y).$$

Now, setting $f := x_i$ we observe than on \mathcal{P}_{n-1}, $T_f(p) = x_ip$. Therefore $T_{f^2} - T_f^2 = 0$ on \mathcal{P}_{n-2}. Therefore:

$$\text{Tr } T_f^2 - \text{Tr } T_{f^2} = O(k^{n-1})$$

and

$$KW^2(\nu_n, \sigma_n) \lesssim \frac{1}{n}.$$
Some extensions

There are many extensions of this result. Of special interest: Let M be a compact smooth algebraic variety in \mathbb{R}^m. We endow the space of polynomials P_n restricted to M with the L^2 norm with respect to the Lebesgue measure. We define interpolating sequences Λ as before.
There are many extensions of this result. Of special interest:
Let M be a compact smooth algebraic variety in \mathbb{R}^m.
We endow the space of polynomials \mathcal{P}_n restricted to M with the L^2 norm with respect to the Lebesgue measure. We define interpolating sequences Λ as before.

Theorem

If Λ is an interpolating sequence for the polynomials then

$$\limsup_{n \to \infty} \frac{1}{N_n} \sum_{\lambda \in \Lambda_n} \delta_\lambda \leq \mu^{eq}.$$

The equilibrium measure in this setting is comparable to the Lebesgue measure.